题目内容
一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小杰过马路时,恰巧是绿灯的概率是_______.
如图,⊙O中,弦CD⊥弦AB于E,若∠B=60°,则∠A=( )
A. 30° B. 45° C. 60° D. 90°
某一次函数的图象经过点(﹣2,1),且y轴随x的增大而减小,则这个函数的表达式可能是_____.(只写一个即可)
如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x轴交于点A和点B(1,0),与y轴相交于点C(0,3).
(1)求抛物线的解析式和顶点D的坐标;
(2)求证:∠DAB=∠ACB;
(3)点Q在抛物线上,且△ADQ是以AD为底的等腰三角形,求Q点的坐标.
如图,一辆小汽车在公路l上由东向西行驶,已知测速探头M到公路l的距离MN为9米,测得此车从点A行驶到点B所用的时间为0.6秒,并测得点A的俯角为30o,点B的俯角为60o.那么此车从A到B的平均速度为_____米/秒.(结果保留三个有效数字,参考数据:≈1.732,≈1.414)
计算: ______.
()探究发现
下面是一道例题及其解答过程,请补充完整:
如图①在等边内部,有一点,若,求证: ,
证明:将绕点逆时针旋转,得到,连接,则为等边三角形.
∴, , __________.
∵,∴,
∴__________,
即,
()类比延伸:
如图②在等腰三角形中, ,内部有一点,若,试判断线段、、之间的数量关系,并证明.
()联想拓展:
如图③在中, , ,点在直线上方,且,满足,请直接写出的值.
分解因式: __________.
已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.
(1)画出△ABC向上平移6个单位得到的△A1B1C1;
(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.