题目内容
已知点A与点(-4 ,-5)关于y轴对称,则A点坐标是( )
A. (4 ,-5) B. (-4 ,5) C. (-5 ,-4) D. (4 , 5)
已知抛物线的图象与轴交于点、(在的左侧),与轴交于点,顶点为.
()试确定的值,并直接写出点的坐标.
()试在轴上求一点,使得的周长取最小值.
()若将抛物线向右平移个单位长度,所得新抛物线的顶点记作,点的对应点记作,与原抛物线的交点记作,则是否存在一个的值,使的面积与的面积比为,且点、、在同一条直线上?若存在,请求出的值;若不存在,请说明理由.
某粮食公司年生产大米总量为万吨,比年大米生产总量增加了,那么年大米生产总量为( )万吨.
A. B. C. D.
若点A的坐标满足条件,则点A在第________象限.
在直角坐标系中,O为坐标原点,已知A(-1,1),在坐标轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有( )
A. 10个 B. 8个 C. 4个 D. 6个
如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠CBF=,求BC和BF的长.
如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:
①∠EBG=45°; ②△DEF∽△ABG;
③S△ABG=S△FGH; ④AG+DF=FG.
其中正确的是_____.(填写正确结论的序号)
某百货大楼某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调查,如果每件童装降价1元,那么平均每天就可多售出2件.为了使百姓得到实惠,要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?
二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=与y=bx+c在同一直角坐标系内的大致图象是( )
A. B.
C. D.