题目内容
分解因式:=_______.
.
【解析】
试题分析:==,故答案为:.
考点:1.提公因式法与公式法的综合运用;2.因式分解.
为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米、宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出____个这样的停车位.(≈1.4)
二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是( )
A.4个B.3个C.2个D.1个
(本题满分10分)如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一不明国籍的渔船C,求此时渔船C与海监船B的距离是多少.(结果保留根号)
已知二次函数的图像过点A(1,2),B(3,2),C(5,7).若点M(-2,),N(-1,),K(8,)也在二次函数的图像上,则,,的从小到大的关系是 .
如图, AB是⊙O的直径, CD是弦, 且CD⊥AB, 若BC=4, AC=2, 则sin∠ABD的值为( )
A. B. C. D.
(本题满分12分)问题提出:平面内不在同一条直线上的三点确定一个圆.那么平面内的四点(任意三点均不在同一直线上),能否在同一个圆呢?
初步思考:设不在同一条直线上的三点A、B、C确定的圆为⊙O.
⑴当C、D在线段AB的同侧时,
如图①,若点D在⊙O上,此时有∠ACB=∠ADB,理由是 ;
如图②,若点D在⊙O内,此时有∠ACB ∠ADB;
如图③,若点D在⊙O外,此时有∠ACB ∠ADB.(填“=”、“>”或“<”);
由上面的探究,请直接写出A、B、C、D四点在同一个圆上的条件: .
类比学习:(2)仿照上面的探究思路,请探究:当C、D在线段AB的异侧时的情形.
如图④,此时有 ,
如图⑤,此时有 ,
如图⑥,此时有 .
由上面的探究,请用文字语言直接写出A、B、C、D四点在同一个圆上的条件:
拓展延伸:(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线?
已知:如图,AB是⊙O的直径,点C在⊙O上.
求作:CN⊥AB.
作法:①连接CA, CB;
②在上任取异于B、C的一点D,连接DA,DB;
③DA与CB相交于E点,延长AC、BD,交于F点;
④连接F、E并延长,交直径AB于M;
⑤连接D、M并延长,交⊙O于N.连接CN. 则CN⊥AB.
请按上述作法在图④中作图,并说明CN⊥AB的理由.(提示:可以利用(2)中的结论)
2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,
169,168,则她们身高的极差是 cm.
如图所示,△ABC中BC边上的高是 ( )
A、BD B、AE
C、BE D、CF