题目内容
“平面内四只内角都相等的四边形是矩形”是________事件.(填“必然”、“随机”、“不可能”)
已知⊙O的半径为5㎝,P到圆心O的距离为6㎝,则点P在⊙O( )
A.外部 B.内部 C.圆上 D.不能确定
已知:m、n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+2m= .
如图,△ABC中,∠C=90°,AC=BC,点D是AB的中点,分别过点D作DE⊥AC,DF⊥BC,垂足分别为点E、F.求证:四边形CEDF是正方形.
如图,在△ABC中,∠C=90°,AC=2cm,AB=3cm,将△ABC绕点B顺时针旋转60°得到△FBE,则点E与点C之间的距离是_________cm.
在菱形ABCD中,AC=10,BD=24,则该菱形的周长等于【 】
A. 13 B. 52 C. 120 D. 240
如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.
(1)求AD的长及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.
用配方法解方程x2+4x+1=0,配方后的方程是( )
A. (x+2)2=3 B. (x﹣2)2=3 C. (x﹣2)2=5 D. (x+2)2=5
如图,从一运输船的点A处观测海岸上高为41m的灯塔BC(观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则点A到灯塔BC的距离约为____(精确到1cm).