题目内容
一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=m,已知木箱高BE=m,斜面坡角为30°,则木箱端点E距地面AC的高度EF为 m.
3
如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为 cm.
不透明的袋中装有3个分别标有数字1,2,3的小球,这些球除数字不同外,其它均相同.从中随机取出一个球,以该球上的数字作为十位数,再从袋中剩余2个球中随机取出一个球,以该球上的数字作为个位数,所得的两位数大于20的概率为
A. B. C. D.
如图,和都是以A为直角顶点的等腰直角三角形,连结BD,BE,CE,延长CE交AB于点F,交BD于点G.
(1)求证:;
(2)若是边长可变化的等腰直角三角形,并将绕点旋转,使CE的延长线始终与线段BD(包括端点B、D)相交.当为等腰直角三角形时,求出的值.
已知圆锥的底面半径为3cm,母线长为5cm,则此圆锥的侧面积为
A.15πcm2 B.20πcm2 C.25πcm2 D.30πcm2
(1) △AEB ∽ △CBA .
(或△AEB∽△BFC;△AEB∽△ADC;△CAB∽△BFC;△BFC∽△ADC . )
证明:∵四边形ABCD和四边形AEFC是矩形,
∴∠E =∠CBA=∠EAC=90°.
∵∠EAB+∠CAB=90°,
∠EAB+∠ABE=90°,
∴∠ABE=∠CAB.
∴△AEB ∽ △CBA.
(2)解:∵△AEB ∽ △CBA,
∴ . ∴.
∵
∴.
已知抛物线与轴相交于,两点(点在点的左侧),与轴相交于点.
(1)点的坐标为 ,点的坐标为 ;
(2)在轴的正半轴上是否存在点,使以点,,为顶点的三角形与相似?若存在,求出点的坐标,若不存在,请说明理由.
要锻造出直径为16 cm,高为5 cm的圆柱形的零件毛坯,应取截直径为8 cm的圆钢______ m.
若不等式组的解集为-1<x<1,那么(a+1)(b-1)的值等于________.