题目内容
已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )
A.50° B.80° C.50°或80° D.40°或65°
如图,墙面OC与地面OD垂直,一架梯子AB长5米,开始时梯子紧贴墙面,梯子顶端A沿墙面匀速每分钟向下滑动1米,x分钟后点A滑动到点A′,梯子底端B沿地面向左滑动到点B′,OB′=y米,滑动时梯子长度保持不变.
(1)当x=1时,y= 米;
(2)求y关于x的函数关系式,并写出自变量x的取值范围;
(3)研究(2)中函数图象及其性质.
①填写下表,并在所给的坐标系中画出函数图象;
②如果点P(x,y)在(2)中的函数图象上,求证:点P到点Q(5,0)的距离是定值;
(4)梯子底端B沿地面向左滑动的速度是
A.匀速 B.加速 C.减速 D.先减速后加速.
如图,在△ABC、△ADE中,C、D两点分别在AE、AB上,BC、DE交于点F,若BD=DC=CE,∠ADC+∠ACD=114°,则∠DFC为( )
A.114° B.123° C.132° D.147°
计算
(1)
(2)(2a+3b)(3a﹣2b)
如图1,点E为矩形ABCD边AD上一点,点P点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s.设P,Q出发t秒时,△BPQ的面积为y cm2,已知y与t的函数关系的图象如图2(曲线OM为抛物线的一部分).则下列结论:
①AE=6cm;
②当0<t≤10时,y=t2;
③直线NH的解析式为y=﹣5t+110;
④若△ABE与△QBP相似,则t=秒,
其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣8,0),B(0,﹣6)两点.
(1)求出直线AB的函数解析式;
(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;
(3)设(2)中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.
如图,AB是⊙O的一条弦,C是⊙O上一动点且∠ACB=45°,E、F分别是AC、BC的中点,直线EF与⊙O交于点G、H.若⊙O的半径为2,则GE+FH的最大值为 .
一元二次方程x(x+5)=0的根是( )
A.x1=0,x2=5 B.x1=0,x2=﹣5
C.x1=0,x2= D.x1=0,x2=﹣
如图,四边形ABCD为⊙O的内接四边形,E为AB延长线上一点,∠CBE=40°,则∠AOC等于 .