题目内容
三角形内角和定理:_____.
下列说法正确的是( )
A. 全等三角形是指形状相同大小相等的三角形
B. 全等三角形是指面积相等的三角形
C. 周长相等的三角形是全等三角形
D. 所有的等边三角形都是全等三角形
一条抛物线的顶点是A(2,1),且经过点B(1,0),则该抛物线的函数表达式是_____.
①如图1,△ABC中,BO平分∠ABC,CO平分∠ACB,∠BAC=70°,求∠BOC的度数;
②如图2,若点P为△ABC外部一点,PB平分∠ABC,PC平分外角∠ACD,先写出∠BAC和∠BPC的数量关系: ,并证明你的结论.
如图,∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=10cm,AC=6cm,则BE的长为_____.
如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( )
A. BC=EC,∠B=∠E B. BC=EC,AC=DC C. BC=DC,∠A=∠D D. ∠B=∠E,∠A=∠D
在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.
特别地,当点P′与圆心C重合时,规定CP′=0.
(1)当⊙O的半径为1时.
①分别判断点M(2,1),N(,0),T(1, )关于⊙O的反称点是否存在?若存在,求其坐标;
②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;
(2)⊙C的圆心在x轴上,半径为1,直线y=﹣x+2与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.
将一根圆柱形的空心钢管任意放置,它的主视图不可能是( )
A. B. C. D.
计算:﹣16÷(﹣2)3﹣|﹣|×(﹣8)+[1﹣(﹣3)2].