题目内容
要使代数式有意义,则x的取值范围是( ).
A. x≤-2 B. x-≥2 C. x≥2 D. x≤2
如图1,△ABC为等腰直角三角形,∠ACB=90?,F是AC边上的一个动点(点F与A. C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.
(1)猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;
(2)将图1中的正方形CDEF,绕着点C按顺时针方向旋转任意角度α,得到如图2的情形。图2中BF交AC于点H,交AD于点O,请你判断(1)中得到的结论是否仍然成立,并证明你的判断。
(3)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90?,正方形CDEF改为矩形CDEF,如图3,且AC=4,BC=3,CD=,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值。
如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=2,∠AEO=120°,则EF的长度为( )
A. 1 B. 2 C. D.
已知关于x的不等式组有且只有三个整数解,求a的取值范围.
满足m2+n2+2m-6n+10=0的是( ).
A. m=1,n=3 B. m=1,n=-3 C. m=-1,n=3 D. m=-1,n=-3
计算:1﹣a﹣a(1﹣a)﹣a(1﹣a)2﹣a(1﹣a)3﹣…﹣a(1﹣a)2000﹣[(1﹣a)2001﹣3].
若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是________.
小明在一次打篮球时,篮球传出后的运动路线为如图所示的抛物线,以小明所站立的位置为原点O建立平面直角坐标系,篮球出手时在O点正上方1m处的点P.已知篮球运动时的高度y(m)与水平距离x(m)之间满足函数表达式y=-x2+x+c.
(1)求y与x之间的函数表达式;
(2)球在运动的过程中离地面的最大高度;
(3)小亮手举过头顶,跳起后的最大高度为BC=2.5m,若小亮要在篮球下落过程中接到球,求小亮离小明的最短距离OB.
下列说法正确的是( )
A.无限小数都是无理数
B.带根号的数都是无理数
C.无理数是无限不循环小数
D.实数包括正实数、负实数