题目内容

如图,在以AB为直径的半圆中,有一个边长为1的内接正方形CDEF,则以AC和BC的长为两根的一元二次方程是(    )

A.           B.

C.              D.

 

【答案】

A.

【解析】

试题分析:连接AD,BD,OD,由AB为直径与四边形DCFE是正方形,即可证得△ACD∽△DCB,则可求得AC•BC=DC2=1,又由勾股定理求得AB的值,即可得AC+BC=AB,根据根与系数的关系即可求得答案.

连接AD,BD,OD,

∵AB为直径,

∴∠ADB=90°,

∵四边形DCFE是正方形,

∴DC⊥AB,

∴∠ACD=∠DCB=90°,

∴∠ADC+∠CDB=∠A+∠ADC=90°,

∴∠A=∠CDB,

∴△ACD∽△DCB,

又∵正方形CDEF的边长为1,

∵AC•BC=DC2=1,

∵AC+BC=AB,

在Rt△OCD中,

∴AC+BC=AB=

以AC和BC的长为两根的一元二次方程是 

考点:(1)根与系数的关系;(2)勾股定理;(3)正方形的性质;(4)圆周角定理;(5)相似三角形的判定与性质.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网