题目内容
考点:圆周角定理
专题:
分析:首先连接OC,由OB=OC=OA,∠CBO=45°,∠CAO=15°,根据等边对等角的性质,可求得∠OCB与∠OCA的度数,即可求得∠ACB的度数,又由圆周角定理,求得∠AOB的度数.
解答:
解:连接OC,
∵OB=OC=OA,∠CBO=45°,∠CAO=15°,
∴∠OCB=∠OBC=45°,∠OCA=∠OAC=15°,
∴∠ACB=∠OCB-∠OCA=30°,
∴∠AOB=2∠ACB=60°.
故答案是:60.
∵OB=OC=OA,∠CBO=45°,∠CAO=15°,
∴∠OCB=∠OBC=45°,∠OCA=∠OAC=15°,
∴∠ACB=∠OCB-∠OCA=30°,
∴∠AOB=2∠ACB=60°.
故答案是:60.
点评:此题考查了圆周角定理以及等腰三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关题目
如果⊙O的半径为3cm,其中一弧长2πcm,则这弧所对圆心角度数是( )
| A、150° | B、120° |
| C、60° | D、45° |