题目内容

如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线分别交BC、CD于E、F.试说明△CEF是等腰三角形.

说明见解析. 【解析】试题分析:要证明△CEF是等腰三角形,需证明有两角相等即可。利用角平分线、直角三角形及三角形外角的性质,进行等量代换,可求证。 【解析】 ∵∠ACB=90°, ∴∠B+∠BAC=90°. ∵CD⊥AB, ∴∠CAD+∠ACD=90°.∴∠ACD=∠B. ∵AE是∠BAC的平分线,∴∠CAE=∠EAB. ∵∠EAB+∠B=∠CEA,∠...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网