题目内容

如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且 ,弦AD的延长线交切线PC于点E,连接BC.

(1)判断OB和BP的数量关系,并说明理由;

(2)若⊙O的半径为2,求AE的长.

(1)OB=BP,理由见解析(2)3 【解析】【解析】 (1)OB=BP。理由如下:连接OC, ∵PC切⊙O于点C,∴∠OCP=90°。 ∵OA=OC,∠OAC=30°,∴∠OAC=∠OCA=30°。 ∴∠COP=60°。∴∠P=30°。 在Rt△OCP中,OC=OP=OB=BP。 (2)由(1)得OB=OP。 ∵⊙O的半径是2,∴AP=3OB=3×2=...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网