题目内容

请你观察图形,依据图形面积之间的关系,不需要连其他的线,便可得到一个你非常熟悉的公式,这个公式是


  1. A.
    (a+b)(a-b)=a2-b2
  2. B.
    (a+b)2=a2+2ab+b2
  3. C.
    (a-b)2=a2-2ab+b2
  4. D.
    (a+b)2=a2+ab+b2
B
分析:此题观察一个正方形被分为四部分,把这四部分的面积相加就是边长为a+b的正方形的面积,从而得到一个公式.
解答:由图知,大正方形的边长为a+b,
∴大正方形的面积为,(a+b)2
根据图知,大正方形分为:一个边长为a的小正方形,一个边长为b的小正方形,
两个长为b,宽为a的长方形,
∵大正方形的面积等于这四部分面积的和,
∴(a+b)2=a2+2ab+b2
故选B.
点评:此题比较新颖,用面积分割法来证明完全平方式,主要考查完全平方式的展开式.
练习册系列答案
相关题目
现有如图1的8张大小形状相同的直角三角形纸片,三边长分别是a、b、c.用其中4张纸片拼成如图2的大正方形(空白部分是边长分别为a和b的正方形);用另外4张纸片拼成如图3的大正方形(中间的空白部分是边长为c的正方形).

(一)观察:
从整体看,图2和图3的大正方形的面积都可以表示为(a+b)2,结论①依据整个图形的面积等于各部分面积的和.
图2中的大正方形的面积又可以用含字母a、b的代数式表示为:
a2+b2+2ab
a2+b2+2ab
,结论②
图3中的大正方形的面积又可以用含字母a、b、c的代数式表示为:
c2+2ab
c2+2ab
,结论③
(二)思考:
结合结论①和结论②,可以得到一个等式
(a+b)2=a2+b2+2ab
(a+b)2=a2+b2+2ab

结合结论②和结论③,可以得到一个等式
a2+b2=c2
a2+b2=c2

(三)应用:
请你运用(二)中得到的结论任意选择下列两个问题中的一个解答:
(1)求1.462+2×1.46×2.54+2.542的值;
(2)若分别以直角三角形三边为直径,向外作半圆(如图4),三个半圆的面积分别记作S1、S2、S3,且S1+S2+S3=20,求S2的值.
(四)延伸(本题作为附加题,做对加2分)
若分别以直角三角形三边为直径,向上作三个半圆(如图5),直角边a=5,b=12,斜边c=13,则表示图中阴影部分面积和的数值是:
A
A
  A.有理数     B.无理数     C.无法判断
请作出选择,并说明理由.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网