题目内容

如图,正方形ABCD的边BC在等腰直角三角形PQR的斜边QR上,其余两个顶点A,D在PQ,PR上,则PA:PQ等于


  1. A.
    1:数学公式
  2. B.
    1:2
  3. C.
    1:3
  4. D.
    2:3
C
分析:四边形ABCD是正方形ABCD,则△PAD、△ABQ、△CDR是等腰直角三角形,则△PAD∽△PQR,利用比例线段可求PA:PQ(可假设正方形的边长等于a,便于计算).
解答:∵四边形ABCD是正方形,
∴△PAD、△ABQ、△CDR是等腰直角三角形
∴△PAD∽△PQR
∴PA:PQ=AD:QR
设正方形ABCD的边长是a,则AD=a,BQ=CR=BC=a,QR=3a
因而PA:PQ=AD:QR=a:3a=1:3
故选C.
点评:注意到本题中△PAD、△ABQ、△CDR都是等腰直角三角形,是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网