题目内容
细心观察图形,认真分析各式,然后回答问题:
1+(
)2=2S1=
1+(
)2=3S2=
1+(
)2=4S3=
…
(1)请用含有n(n是正整数)的等式表示上述变化规律______;
(2)推算出OA10的长______;
(3)S12+S22+S32+…+S102的值等于______.

1+(
| 1 |
| ||
| 2 |
1+(
| 2 |
| ||
| 2 |
1+(
| 3 |
| ||
| 2 |
…
(1)请用含有n(n是正整数)的等式表示上述变化规律______;
(2)推算出OA10的长______;
(3)S12+S22+S32+…+S102的值等于______.
(1)1+(
)2=2,S1=
;1+(
)2=3,S2=
;1+(
)2=4,S3=
…Sn=
,
(2)OA2=
=
,OA3=
,…OA10=
;
(3)S12=
,S22=
,S32=
,…Sn2=
,
S12+S22+S32+…+Sn2=
+
+…+
=
,
当n=10时,S12+S22+S32+…+S102=
.
故答案为:Sn=
;
;
.
| 1 |
| ||
| 2 |
| 2 |
| ||
| 2 |
| 3 |
| ||
| 2 |
| ||
| 2 |
(2)OA2=
| OA12+A1A22 |
| 2 |
| 3 |
| 10 |
(3)S12=
| 1 |
| 4 |
| 2 |
| 4 |
| 3 |
| 4 |
| n |
| 4 |
S12+S22+S32+…+Sn2=
| 1 |
| 4 |
| 2 |
| 4 |
| n |
| 4 |
| n(n+1) |
| 8 |
当n=10时,S12+S22+S32+…+S102=
| 55 |
| 4 |
故答案为:Sn=
| ||
| 2 |
| 10 |
| 55 |
| 4 |
练习册系列答案
相关题目