题目内容
设直线kx+(k+1)y=1(k≥1且为正整数)与两坐标轴围成的三角形的面积为Sk(k=1,2,…,2011),则S1+S2+…+S2011=( )
A、
| ||
B、
| ||
C、
| ||
D、
|
分析:求出当x=0时,y=
,当y=0时,x=
,根据三角形面积公式求出Sk,求出S1=
×(1-
),S2=
×(
-
),以此类推S2011=
×(
-
),相加后得到
×(1-
),求出即可.
| 1 |
| k+1 |
| 1 |
| k |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2011 |
| 1 |
| 2012 |
| 1 |
| 2 |
| 1 |
| 2012 |
解答:解:当x=0时,y=
,
当y=0时,x=
,
∴Sk=
×
×
,
∴S1=
×1×
=
×(1-
),
S2=
×
×
=
×(
-
),
S3=
(
-
),
…
S2011=
×(
-
),
∴S1+S2+S3+…+S2011=
×(1-
+
-
+
-
+…+
-
),
=
×(1-
)=
,
故选D.
| 1 |
| k+1 |
当y=0时,x=
| 1 |
| k |
∴Sk=
| 1 |
| 2 |
| 1 |
| k |
| 1 |
| k+1 |
∴S1=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
S2=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
S3=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
…
S2011=
| 1 |
| 2 |
| 1 |
| 2011 |
| 1 |
| 2012 |
∴S1+S2+S3+…+S2011=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2011 |
| 1 |
| 2012 |
=
| 1 |
| 2 |
| 1 |
| 2012 |
| 2011 |
| 4024 |
故选D.
点评:本题主要考查对一次函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能总结出规律是解此题的关键.
练习册系列答案
相关题目