题目内容
考点:含30度角的直角三角形,线段垂直平分线的性质
专题:
分析:根据三角形的内角和求出∠B=15°,再根据垂直平分线的性质求出BE=EC,∠1=∠B=15°,然后解直角三角形计算.
解答:
解:如图,连接EC.
∵△ABC中,∠A=90°,∠C=75°,
∴∠B=15°.
∵DE垂直平分BC,
∴BE=EC,∠1=∠B=15°
∴∠2=∠ACB-∠1=75°-15°=60°
在Rt△ACE中,∠2=60°,∠A=90°
∴∠3=180°-∠2-∠A=180°-60°-90°=30°
故EC=2AC=2×6=12,
即BE=12.
故填:12.
∵△ABC中,∠A=90°,∠C=75°,
∴∠B=15°.
∵DE垂直平分BC,
∴BE=EC,∠1=∠B=15°
∴∠2=∠ACB-∠1=75°-15°=60°
在Rt△ACE中,∠2=60°,∠A=90°
∴∠3=180°-∠2-∠A=180°-60°-90°=30°
故EC=2AC=2×6=12,
即BE=12.
故填:12.
点评:本题主要考查线段的垂直平分线的性质及含30°角的直角三角形的性质等几何知识;求得∠3=30°是正确解答本题的关键.
练习册系列答案
相关题目
下列图形中,既是轴对称图形又是中心对称图形的是( )
| A、 |
| B、 |
| C、 |
| D、 |
据中国之声《新闻纵横》2014年4月17日报道,澳大利亚海事安全局根据当地时间16日获得的最新消息,已经对搜索MH370的范围进行了修正,目前划定的搜索区域约为55151平方公里,用科学记数法表示55151为( )
| A、5.5151×104 |
| B、55.151×103 |
| C、551.51×102 |
| D、0.55151×105 |