题目内容


如图,抛物线y=x2通过平移得到抛物线m,抛物线m经过点B(6,0)和O(0,0),它的顶点为A,以O为圆心,OA为半径作圆,在第四象限内与抛物线y=x2交于点C,连接AC,则图中阴影部分的面积为       


﹣12.

【解析】∵抛物线m经过点B(6,0)和O(0,0),∴抛物线m的对称轴为直线x=3,

∵抛物线y=x2通过平移得到抛物线m,∴设抛物线m的解析式为y=(x﹣3)2+k,

将O(0,0)代入,得(0﹣3)2+k=0,解得k=4,

∴抛物线m的解析式为y=(x﹣3)2+4,顶点A的坐标为(3,4),

由勾股定理,得OA=5.

连接OA、OC,由圆的对称性或垂径定理,可知C的坐标为(3,﹣4),

阴影部分的面积=半圆的面积﹣△AOC的面积=•π•52×8×3=﹣12.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网