题目内容

历史上对勾股定理的一种证法采用了下列图形:其中两个全等的直角三角形边AE、EB在一条直线上.证明中用到的面积相等关系是


  1. A.
    S△EDA=S△CEB
  2. B.
    S△EDA+S△CEB=S△CDB
  3. C.
    S四边形CDAE=S四边形CDEB
  4. D.
    S△EDA+S△CDE+S△CEB=S四边形ABCD
D
分析:用三角形的面积和、梯形的面积来表示这个图形的面积,从而证明勾股定理.
解答:∵由S△EDA+S△CDE+S△CEB=S四边形ABCD
可知ab+c2+ab=(a+b)2
∴c2+2ab=a2+2ab+b2,整理得a2+b2=c2
∴证明中用到的面积相等关系是:S△EDA+S△CDE+S△CEB=S四边形ABCD
故选D.
点评:本题考查了勾股定理的证明依据.此类证明要转化成该图形面积的两种表示方法,从而转化成方程达到证明的结果.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网