题目内容
(1)求抛物线的解析式;
(2)在给出的坐标系中画出抛物线y1=ax2+bx+c(a≠0)及直线y2=x+1的图象,并根据图象,直接写出使得y1≥y2的x的取值范围;
(3)设抛物线与x轴的右边交点为A,过点A作x轴的垂线,交直线y2=x+1于点B,在抛物线上是否存在一点P使S△PAB=6?若存在求点P的坐标;若不存在,请说明理由.
考点:抛物线与x轴的交点,二次函数的性质,待定系数法求二次函数解析式,二次函数与不等式(组)
专题:
分析:(1)首先求出抛物线与直线的交点坐标,然后利用待定系数法求出抛物线的解析式;
(2)确定出抛物线与x轴的两个交点坐标,依题意画出函数的图象.由图象可以直观地看出使得y1≥y2的x的取值范围;
(3)首先求出点B的坐标及线段AB的长度;设△PAB中,AB边上的高为h,则由S△PAB=6可以求出h的值.
(2)确定出抛物线与x轴的两个交点坐标,依题意画出函数的图象.由图象可以直观地看出使得y1≥y2的x的取值范围;
(3)首先求出点B的坐标及线段AB的长度;设△PAB中,AB边上的高为h,则由S△PAB=6可以求出h的值.
解答:解:(1)∵抛物线与直线y2=x+1的一个交点的横坐标为2,
∴交点的纵坐标为2+1=3,即交点坐标为(2,3).
设抛物线的解析式为y1=a(x-1)2+4,把交点坐标(2,3)代入得:
3=a(2-1)2+4,
解得a=-1,
∴抛物线解析式为:y1=-(x-1)2+4=-x2+2x+3.
(2)令y1=0,即-x2+2x+3=0,解得x1=3,x2=-1,
∴抛物线与x轴交点坐标为(3,0)和(-1,0).
在坐标系中画出抛物线与直线的图形,如图:

根据图象,可知使得y1≥y2的x的取值范围为-1≤x≤2.
(3)由(2)可知,点A坐标为(3,0).
令x=3,则y2=x+1=3+1=4,∴B(3,4),即AB=4.

设△PAB中,AB边上的高为h,则h=|xP-xA|=|xP-3|,
S△PAB=
AB•h=
×4×|xP-3|=2|xP-3|.
已知S△PAB=6,2|xP-3|=6,化简得:|xP-3|=3,
解得 xP=0或xP=6.
∵点P是抛物线y=-x2+2x+3上的点,
∴当xP=0时,yP=3.当xP=6时,yP=-21,
∴点P的坐标是:(0,3),(6,-21).
∴交点的纵坐标为2+1=3,即交点坐标为(2,3).
设抛物线的解析式为y1=a(x-1)2+4,把交点坐标(2,3)代入得:
3=a(2-1)2+4,
解得a=-1,
∴抛物线解析式为:y1=-(x-1)2+4=-x2+2x+3.
(2)令y1=0,即-x2+2x+3=0,解得x1=3,x2=-1,
∴抛物线与x轴交点坐标为(3,0)和(-1,0).
在坐标系中画出抛物线与直线的图形,如图:
根据图象,可知使得y1≥y2的x的取值范围为-1≤x≤2.
(3)由(2)可知,点A坐标为(3,0).
令x=3,则y2=x+1=3+1=4,∴B(3,4),即AB=4.
设△PAB中,AB边上的高为h,则h=|xP-xA|=|xP-3|,
S△PAB=
| 1 |
| 2 |
| 1 |
| 2 |
已知S△PAB=6,2|xP-3|=6,化简得:|xP-3|=3,
解得 xP=0或xP=6.
∵点P是抛物线y=-x2+2x+3上的点,
∴当xP=0时,yP=3.当xP=6时,yP=-21,
∴点P的坐标是:(0,3),(6,-21).
点评:本题考查了二次函数的图象与性质、一次函数的图象与性质、待定系数法、三角形的面积、解不等式(组)等知识点.题目难度不大,注意“数形结合”数学思想的应用.
练习册系列答案
相关题目