题目内容
设方程4x2-7x+3=0的两根为x1,x2,不解方程,求下列各式的值:
(1)x12+x22;
(2)x1-x2;
(3)
+
;
(4)x1x22+
x1.
(1)x12+x22;
(2)x1-x2;
(3)
| x1 |
| x2 |
(4)x1x22+
| 1 |
| 2 |
考点:根与系数的关系
专题:
分析:由方程4x2-7x+3=0的两根为x1,x2,根据根与系数的关系可得x1+x2=
,x1•x2=
;
(1)由x12+x22=(x1+x2)2-2x1•x2,即可求得答案;
(2)由x1-x2=±
,即可求得答案;
(3)由(
+
)2=x1+x2+2
,即可求得答案;
(4)由x1x22+
x1=x1x2•x2+
x1=
x2+
x1=
x2+
x1=
(x2+x1)+
(x2-x1),即可求得答案.
| 7 |
| 4 |
| 3 |
| 4 |
(1)由x12+x22=(x1+x2)2-2x1•x2,即可求得答案;
(2)由x1-x2=±
| (x1+x2)2-4x1x2 |
(3)由(
| x1 |
| x2 |
| x1x2 |
(4)由x1x22+
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 4 |
| 1 |
| 2 |
| 6 |
| 8 |
| 4 |
| 8 |
| 5 |
| 8 |
| 1 |
| 8 |
解答:解:∵方程4x2-7x+3=0的两根为x1,x2,
∴x1+x2=
,x1•x2=
;
(1)x12+x22=(x1+x2)2-2x1•x2=
-
=
;
(2)x1-x2=±
=±
=±
;
(3)∵(
+
)2=x1+x2+2
=
+2×
=
+
,
∴
+
=
;
(4)∵x1x22+
x1=x1x2•x2+
x1=
x2+
x1=
x2+
x1=
(x2+x1)+
(x2-x1),
∴原式=
或
.
∴x1+x2=
| 7 |
| 4 |
| 3 |
| 4 |
(1)x12+x22=(x1+x2)2-2x1•x2=
| 49 |
| 16 |
| 3 |
| 2 |
| 25 |
| 16 |
(2)x1-x2=±
| (x1+x2)2-4x1x2 |
(
|
| 1 |
| 4 |
(3)∵(
| x1 |
| x2 |
| x1x2 |
| 7 |
| 4 |
| ||
| 2 |
| 7 |
| 4 |
| 3 |
∴
| x1 |
| x2 |
2+
| ||
| 2 |
(4)∵x1x22+
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 4 |
| 1 |
| 2 |
| 6 |
| 8 |
| 4 |
| 8 |
| 5 |
| 8 |
| 1 |
| 8 |
∴原式=
| 9 |
| 8 |
| 17 |
| 16 |
点评:此题考查了根与系数的关系.此题难度适中,注意若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-
,x1x2=
,反过来也成立,即
=-(x1+x2),
=x1x2.
| b |
| a |
| c |
| a |
| b |
| a |
| c |
| a |
练习册系列答案
相关题目
多项式2x2-3x-5的次数与常数项分别是( )
| A、2,5 | B、2,-5 |
| C、1,5 | D、1,-5 |