题目内容

如图,将长方形纸片ABCD折叠,使点B与点D重合,折痕为EF,已知AB=6cm,BC=18cm,则Rt△CDF的面积是


  1. A.
    27cm2
  2. B.
    24cm2
  3. C.
    22cm2
  4. D.
    20cm2
B
分析:求Rt△CDF的面积,CD边是直角边,有CD=AB=6cm,只要求出边FC即可.由于点B与点D重合,所以有FD=BF=BC-FC=18-FC,利用勾股定理可求出FC了.
解答:设FC=x,Rt△CDF中,CD=6cm,FC=x,又折痕为EF,
∴FD=BF=BC-FC=18-FC=18-x,
Rt△CDF中,DF2=FC2+CD2
即(18-x)2=x2+62
解得x=8,
∴面积为×FC×CD=×8×6=24.
故选B.
点评:解决本题的关键是根据折叠及矩形的性质利用勾股定理求得CF的长度;易错点是得到DF与CF的长度和为18的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网