题目内容

在△ABC中,AB=AC,BC=8cm,tanB=
3
4
.一动点P在底边上从点B向点C以0.25cm/s的速度移动,当PA与腰垂直时,点P运动了
 
s.
考点:解直角三角形
专题:动点型
分析:根据等腰三角形三线合一性质可得到BD的长,由勾股定理可求得AD的长,再分两种情况进行分析:①PA⊥AC②PA⊥AB,从而可得到运动的时间.
解答:解:如图,作AD⊥BC,交BC于点D,
∵BC=8cm,
∴BD=CD=
1
2
BC=4cm,
∵tanB=
AD
BD
=
3
4

∴AD=3,
分两种情况:当点P运动t秒后有PA⊥AC时,
∵AP2=PD2+AD2=PC2-AC2
∴PD2+AD2=PC2-AC2
∴PD2+32=(PD+4)2-52
∴PD=2.25,
∴BP=4-2.25=1.75=0.25t,
∴t=7秒,
当点P运动t秒后有PA⊥AB时,同理可证得PD=2.25,
∴BP=4+2.25=6.25=0.25t,
∴t=25秒,
∴点P运动的时间为7秒或25秒,
故答案为:7或25.
点评:本题考查了对锐角三角函数的定义,勾股定理的应用,用了分类讨论思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网