题目内容

4.若x2a+b-2xa-b+3=0是关于x的一元二次方程,求a,b的值.

分析 本题根据一元二次方程的定义求解.分5种情况分别求解即可.

解答 解:∵x2a+b-2xa+b+3=0是关于x的一元二次方程,
∴①$\left\{\begin{array}{l}{2a+b=2}\\{a-b=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=1}\\{b=0}\end{array}\right.$;
②$\left\{\begin{array}{l}{2a+b=2}\\{a-b=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=\frac{2}{3}}\\{b=\frac{2}{3}}\end{array}\right.$;
③$\left\{\begin{array}{l}{2a+b=1}\\{a-b=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=1}\\{b=-1}\end{array}\right.$;
④$\left\{\begin{array}{l}{2a+b=0}\\{a-b=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=\frac{2}{3}}\\{b=-\frac{4}{3}}\end{array}\right.$;
⑤$\left\{\begin{array}{l}{2a+b=2}\\{a-b=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=\frac{4}{3}}\\{b=-\frac{2}{3}}\end{array}\right.$;
综上所述$\left\{\begin{array}{l}{a=1}\\{b=0}\end{array}\right.$,$\left\{\begin{array}{l}{a=\frac{2}{3}}\\{b=\frac{2}{3}}\end{array}\right.$,$\left\{\begin{array}{l}{a=1}\\{b=-1}\end{array}\right.$,$\left\{\begin{array}{l}{a=\frac{2}{3}}\\{b=-\frac{4}{3}}\end{array}\right.$,$\left\{\begin{array}{l}{a=\frac{4}{3}}\\{b=-\frac{2}{3}}\end{array}\right.$.

点评 本题主要考查了一元二次方程的概念.解题的关键是分5种情况讨论x的指数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网