题目内容


如图,AB是大半圆O的直径,AO是小半圆M的直径,点P是大半圆O上一点,PA与小半圆M交于点C,过点C作CD⊥OP于点D.

(1)求证:CD是小半圆M的切线;

(2)若AB=8,点P在大半圆O上运动(点P不与A,B两点重合),设PD=x,CD2=y.

①求y与x之间的函数关系式,并写出自变量x的取值范围;

②当y=3时,求P,M两点之间的距离.


解:(1)连接CO、CM,如图1所示.

∵AO是小半圆M的直径,

∴∠ACO=90°即CO⊥AP.

∵OA=OP,

∴AC=PC.

∵AM=OM,

∴CM∥PO.

∴∠MCD=∠PDC.

∵CD⊥OP,

∴∠PDC=90°.

∴∠MCD=90°即CD⊥CM.

∵CD经过半径CM的外端C,且CD⊥CM,

∴直线CD是小半圆M的切线.

 

(2)①∵CO⊥AP,CD⊥OP,

∴∠OCP=∠ODC=∠CDP=90°.

∴∠OCD=90°﹣∠DCP=∠P.

∴△ODC∽△CDP.

∴CD2=DP•OD.

∵PD=x,CD2=y,OP=AB=4,

∴y=x(4﹣x)=﹣x2+4x.

当点P与点A重合时,x=0;当点P与点B重合时,x=4;

∵点P在大半圆O上运动(点P不与A,B两点重合),

∴0<x<4.

∴y与x之间的函数关系式为y=﹣x2+4x,

自变量x的取值范围是0<x<4.

 

②当y=3时,﹣x2+4x=3.

解得:x1=1,x2=3.

Ⅰ.当x=1时,如图2所示.

在Rt△CDP中,

∵PD=1,CD=

∴tan∠CPD==

∴∠CPD=60°.

∵OA=OP,

∴△OAP是等边三角形.

∵AM=OM,

∴PM⊥AO.

∴PM=

=

=2

Ⅱ.当x=3时,如图3所示.

同理可得:∠CPD=30°.

∵OA=OP,

∴∠OAP=∠APO=30°.

∴∠POB=60°

过点P作PH⊥AB,垂足为H,连接PM,如图3所示.

∵sin∠POH===

∴PH=2

同理:OH=2.

在Rt△MHP中,

∵MH=4,PH=2

∴PM=

=

=2

综上所述:当y=3时,P,M两点之间的距离为2或2


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网