题目内容

4.(1)对于任意不相等的两个实数a、b,定义运算※如下:a※b=$\frac{\sqrt{a+b}}{a-b}$,例如3※2=$\frac{\sqrt{3+2}}{3-2}$=$\sqrt{5}$,求8※12的值.
(2)先化简,再求值:$\frac{2}{a-1}$+$\frac{{a}^{2}-4a+4}{{a}^{2}-1}$÷$\frac{a-2}{a+1}$,其中a=1+$\sqrt{2}$.

分析 (1)根据运算的定义转化为根式的计算,然后对所求的式子进行化简;
(2)首先把所求的式子分子和分母分解因式,把除法转化为乘法,计算乘法,再进行分式的加法运算即可化简,最后代入数值计算即可.

解答 解:(1)原式=$\frac{\sqrt{8+12}}{8-12}$=$\frac{\sqrt{20}}{-4}$=-$\frac{\sqrt{5}}{2}$;
(2)原式=$\frac{2}{a-1}$+$\frac{(a-2)^{2}}{(a+1)(a-1)}$•$\frac{a+1}{a-2}$
=$\frac{2}{a-1}$+$\frac{a-2}{a-1}$
=$\frac{a}{a-1}$,
当a=1+$\sqrt{2}$时,原式=$\frac{1+\sqrt{2}}{\sqrt{2}}$=$\frac{2+\sqrt{2}}{2}$.

点评 本题考查了分式的化简求值,正确对分式的分子和分母分解因式是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网