题目内容
已知如图:(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB、CD交于0点,对于各图中的两个三角形而言,下列说法正确的是

- A.都相似
- B.都不相似
- C.只有(1)相似
- D.只有(2)相似
A
分析:图(1)根据三角形的内角和定理,即可求得△ABC的第三角,由有两角对应相等的三角形相似,即可判定(1)中的两个三角形相似;
图(2)根据图形中的已知条件,即可证得
,又由对顶角相等,即可根据对应边成比例且夹角相等的三角形相似证得相似.
解答:如图(1)∵∠A=35°,∠B=75°,
∴∠C=180°-∠A-∠B=70°,
∵∠E=75°,∠F=70°,
∴∠B=∠E,∠C=∠F,
∴△ABC∽△DEF;

如图(2)∵OA=4,OD=3,OC=8,OB=6,
∴
,
∵∠AOC=∠DOB,
∴△AOC∽△DOB.
故选A.
点评:此题考查了相似三角形的判定.注意有两角对应相等的三角形相似与对顶角相等,即可根据对应边成比例且夹角相等的三角形相似的定理的应用.
分析:图(1)根据三角形的内角和定理,即可求得△ABC的第三角,由有两角对应相等的三角形相似,即可判定(1)中的两个三角形相似;
图(2)根据图形中的已知条件,即可证得
解答:如图(1)∵∠A=35°,∠B=75°,
∴∠C=180°-∠A-∠B=70°,
∵∠E=75°,∠F=70°,
∴∠B=∠E,∠C=∠F,
∴△ABC∽△DEF;
如图(2)∵OA=4,OD=3,OC=8,OB=6,
∴
∵∠AOC=∠DOB,
∴△AOC∽△DOB.
故选A.
点评:此题考查了相似三角形的判定.注意有两角对应相等的三角形相似与对顶角相等,即可根据对应边成比例且夹角相等的三角形相似的定理的应用.
练习册系列答案
相关题目
已知如图,点C是线段AB的黄金分割点(AC>BC),则下列结论中正确的是( )

| A、AB2=AC2+BC2 | ||||||
| B、BC2=AC•BA | ||||||
C、
| ||||||
D、
|