题目内容
考点:线段垂直平分线的性质
专题:
分析:由∠BAC=110°,即可求得∠B+∠C=70°,又由MP和NQ分别垂直平分AB和AC,即可得AP=BP,AQ=CQ,则可求得∠BAP+∠CAQ=∠B+∠C=70°,继而求得答案.
解答:解:∵∠BAC=110°,
∴∠B+∠C=70°,
∵MP和NQ分别垂直平分AB和AC,
∴AP=BP,AQ=CQ,
∴∠BAP=∠B,∠CAQ=∠C,
∴∠BAP+∠CAQ=∠B+∠C=70°,
∴∠PAQ=∠BAC-(∠BAP+∠CAQ)=40°.
∴∠B+∠C=70°,
∵MP和NQ分别垂直平分AB和AC,
∴AP=BP,AQ=CQ,
∴∠BAP=∠B,∠CAQ=∠C,
∴∠BAP+∠CAQ=∠B+∠C=70°,
∴∠PAQ=∠BAC-(∠BAP+∠CAQ)=40°.
点评:此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关题目