ÌâÄ¿ÄÚÈÝ
14£®[ÎÊÌâÇé¾³]¹´¹É¶¨ÀíÊÇÒ»Ìõ¹ÅÀϵÄÊýѧ¶¨Àí£¬ËüÓкܶàÖÖÖ¤Ã÷·½·¨£®ÎÒ¹úºº´úÊýѧ¼ÒÕÔˬ¸ù¾ÝÏÒͼ£¬ÀûÓÃÃæ»ý·¨½øÐÐÖ¤Ã÷£¬ÖøÃûÊýѧ¼Ò»ªÂÞ¸ýÔøÌá³ö°Ñ¡°Êýѧ¹ØÏµ¡±£¨¹´¹É¶¨Àí£©´øµ½ÆäËüÐÇÇò£¬×÷ΪµØÇòÈËÓëÆäËûÐÇÇò¡°ÈË¡±½øÐеÚÒ»´Î¡°Ì¸»°¡±µÄÓïÑÔ£»
[¶¨Àí±íÊö]ÇëÄã¸ù¾Ýͼ1ÖеÄÖ±½ÇÈý½ÇÐÎÐðÊö¹´¹É¶¨Àí£»
[³¢ÊÔÖ¤Ã÷]ÒÔͼ1ÖеÄÖ±½ÇÈý½ÇÐÎΪ»ù´¡£¬½«Á½¸öÖ±½Ç±ß³¤Îªa£¬b£¬Ð±±ß³¤ÎªcµÄÈý½ÇÐΰ´ÈçͼËùʾµÄ·½Ê½·ÅÖã¬Á¬½ÓÁ½¸öÖ®¼äÈý½ÇÐεÄÁíÍâÒ»¶ÔÈñ½ÇµÄ¶¥µã£¨Èçͼ2£©£¬ÇëÄãÀûÓÃͼ2£¬ÑéÖ¤¹´¹É¶¨Àí£»
[֪ʶÀ©Õ¹]ÀûÓÃͼ2ÖеÄÖ±½ÇÌÝÐΣ¬ÎÒÃÇ¿ÉÒÔÖ¤Ã÷$\frac{a+b}{c}$£¼$\sqrt{2}$£¬ÆäÖ¤Ã÷²½ÖèÈçÏ£º
¡ßBC=a+b£¬AD=$\sqrt{2}c$
ÓÖ¡ßÔÚÖ±½ÇÌÝÐÎABCDÖУ¬ÓÐBCAD£¨Ìî´óС¹ØÏµ£©£¬¼´BC£¼AD
¡à$\frac{a+b}{c}$$£¼\sqrt{2}$£®
·ÖÎö £¨1£©¸ù¾Ý¹´¹É¶¨ÀíÓÃÎÄ×Ö¼°·ûºÅÓïÑÔÐðÊö£»
£¨2£©ÀûÓÃSAS¿ÉÖ¤¡÷ABE¡Õ¡÷ECD£¬¿ÉµÃ¶ÔÓ¦½ÇÏàµÈ£¬½áºÏ90¡ãµÄ½Ç£¬¿ÉÖ¤¡ÏAED=90¡ã£¬ÀûÓÃÌÝÐÎÃæ»ýµÈÓÚÈý¸öÖ±½ÇÈý½ÇÐεÄÃæ»ýºÍ£¬¿ÉÖ¤a2+b2=c2£»
£¨3£©ÔÚÖ±½ÇÌÝÐÎABCDÖУ¬BC£¼AD£¬ÓÉÓÚÒÑÖ¤¡÷AEDÊÇÖ±½ÇÈý½ÇÐΣ¬ÄÇôÀûÓù´¹É¶¨ÀíÓÐAD=$\sqrt{2}$c£¬´Ó¶ø¿ÉÖ¤ $\frac{a+b}{c}$£¼$\sqrt{2}$£®
½â´ð ½â£º£¨1£©¹´¹É¶¨Àí£ºÔÚÈκÎÒ»¸öÖ±½ÇÈý½ÇÐÎÖУ¬Á½ÌõÖ±½Ç±ß³¤µÄƽ·½Ö®ºÍÒ»¶¨µÈÓÚб±ß³¤µÄƽ·½£®
£¨2£©Èç¹ûÖ±½ÇÈý½ÇÐεÄÁ½Ö±½Ç±ß³¤Îªa£¬b£¬Ð±±ß³¤Îªc£¬ÄÇôa2+b2=c2£®
¡ßRt¡÷ABE¡ÕRt¡÷ECD£¬
¡à¡ÏAEB=¡ÏEDC£»
ÓÖ¡ß¡ÏEDC+¡ÏDEC=90¡ã£¬
¡à¡ÏAEB+¡ÏDEC=90¡ã£»
¡à¡ÏAED=90¡ã£»
SÌÝÐÎABCD=SRt¡÷ABE+SRt¡÷DEC+SRt¡÷AED=$\frac{1}{2}$£¨a+b£©£¨a+b£©=$\frac{1}{2}$ab+$\frac{1}{2}$ab+$\frac{1}{2}$c2£»
$\frac{1}{2}$£¨a2+2ab+b2£©=$\frac{1}{2}$ab+$\frac{1}{2}$ab+$\frac{1}{2}$c2£»
ÕûÀíµÃa2+b2=c2£®
£¨3£©¡ßAD=$\sqrt{2}$c£¬BC£¼AD£¬
¡àa+b£¼$\sqrt{2}$c£¬¼´ $\frac{a+b}{c}$£¼$\sqrt{2}$£®
¹Ê´ð°¸Îª£º$\sqrt{2}c$£»BC£¼AD
µãÆÀ ¿¼²éÁ˹´¹É¶¨ÀíµÄÖ¤Ã÷£¬±¾ÌâÀûÓÃÁËÈ«µÈÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Ãæ»ý·Ö¸î·¨¡¢¹´¹É¶¨ÀíµÈ֪ʶ£®
| A£® | 40¡ã | B£® | 35¡ã | C£® | 36¡ã | D£® | 30¡ã |
| A£® | µÈÑüÌÝÐÎ | B£® | ¾ØÐÎ | C£® | ÁâÐÎ | D£® | Õý·½ÐÎ |