题目内容
2.分析 先根据抛物线的开口向上可知a>0,由顶点纵坐标为-3得出b与a关系,再根据一元二次方程ax2+bx+m=0有实数根可得到关于m的不等式,求出m的取值范围即可.
解答 方法一解:∵抛物线的开口向上,顶点纵坐标为-3,
∴a>0.
-$\frac{{b}^{2}}{4a}$=-3,即b2=12a,
∵一元二次方程ax2+bx+m=0有实数根,
∴△=b2-4am≥0,即12a-4am≥0,即12-4m≥0,解得m≤3,
∴m的最大值为3,
方法二:解:一元二次方程ax2+bx+m=0有实数根,则二次函数y=ax2+bx的图象与直线y=-m有交点,
由图象得,-m≥-3,解得m≤3,
∴m的最大值为3,
故答案为3.
点评 本题考查的是抛物线与x轴的交点,根据题意判断出a的符号及a、b的关系是解答此题的关键.
练习册系列答案
相关题目
17.下列四个实数中,绝对值最大的数是( )
| A. | -$\sqrt{20}$ | B. | $\sqrt{15}$ | C. | $\root{3}{19}$ | D. | -$\root{3}{62}$ |