题目内容

如图,已知双曲线)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=____________.

2.

【解析】

试题分析:过D点作DE⊥x轴,垂足为E,∵在Rt△OAB中,∠OAB=90°,∴DE∥AB,∵D为Rt△OAB斜边OB的中点D,∴DE为Rt△OAB的中位线,∴DE∥AB,∴△OED∽△OAB,∴两三角形的相似比为:,∵双曲线),可知S△AOC=S△DOE=k,∴S△AOB=4S△DOE=2k,由S△AOB﹣S△AOC=S△OBC=3,得2k﹣k=3,解得k=2.故本题答案为:2.

考点:反比例函数系数k的几何意义.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网