题目内容
下列各组数中,能构成直角三角形的是( )
A. 4,5,6 B. 1,1, C. 6,8,11 D. 5,12,23
关于x的一元二次方程(2m+1)x2+4mx+2m﹣3=0
(Ⅰ)当m=时,求方程的实数根;
(Ⅱ)若方程有两个不相等的实数根,求实数m的取值范围;
“a是实数,|a|≥0”这一事件是( )
A. 必然事件 B. 不确定事件 C. 不可能事件 D. 随机事件
如图所示:数轴上点A所表示的数为a,则a的值是___________.
若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( )
A. 矩形 B. 菱形
C. 对角线相等的四边形 D. 对角线互相垂直的四边形
已知关于x的一元二次方程x2+2(k+1)x+k2+2=0有两个实根x1,x2.
(1)求实数k的取值范围;
(2)若实数k能使x1﹣x2=2,求出k的值.
如图,在Rt△ABC中,∠ACB=90°,∠A=56°,以BC为直径的⊙O交AB于点D,E是⊙O上一点,且,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为_____.
如图,菱形的对角线、相交于点,过点作且,连接、,连接交于点.
(1)求证:;
(2)若菱形的边长为2, .求的长.
【答案】(1)证明见解析(2)
【解析】试题分析:(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,可得OE=CD即可;
(2)根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.
(1)证明:在菱形ABCD中,OC=AC.
∴DE=OC.
∵DE∥AC,
∴四边形OCED是平行四边形.
∵AC⊥BD,
∴平行四边形OCED是矩形.
∴OE=CD.
(2)在菱形ABCD中,∠ABC=60°,
∴AC=AB=2.
∴在矩形OCED中,
CE=OD=.
在Rt△ACE中,
AE=.
点睛:本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.
【题型】解答题【结束】25
如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).
(1)求反比例函数与一次函数的表达式;
(2)结合图像写出不等式的解集;
(3)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.
在用计算器计算一个多边形的内角和时,小明的结果为1825°,小芳立即判断他的结果是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.则多输入的那个角的度数为___________.