题目内容
已知正比例函数y=kx的函数值y随x的增大而减小,则一次函数y=kx-k的图象大致是( )
分析:由于正比例函数y=kx(k≠0)函数值随x的增大而减小,可得k<0,-k>0,然后,判断一次函数y=kx-k的图象经过象限即可;
解答:解:∵正比例函数y=kx(k≠0)函数值随x的增大而减小,
∴k<0,
∴-k>0,
∴一次函数y=-kx+k的图象经过一、二、四象限;
故选C.
∴k<0,
∴-k>0,
∴一次函数y=-kx+k的图象经过一、二、四象限;
故选C.
点评:本题主要考查了一次函数的图象,掌握一次函数y=kx+b,当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;k<0,b>0时,图象过一、二、四象限;k<0,b<0时,图象过二、三、四象限.
练习册系列答案
相关题目
已知正比例函数y=k1x(k1≠0)与反比例函数y=
(k2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是( )
| k2 |
| x |
| A、(2,1) |
| B、(-2,-1) |
| C、(-2,1) |
| D、(2,-1) |