题目内容

如图已知∠1=∠2,∠BAD=∠BCD,则下列结论⑴AB∥CD,⑵AD∥BC,⑶∠B=∠D,⑷∠D=∠ACB,正确的有


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
C
试题分析:①根据内错角相等,判定两直线平行;
②根据两直线平行,同旁内角互补与同旁内角互补,两直线平行进行判定;
③根据两直线平行,同旁内角互补与同角的补角相等判定;
④∠D与∠ACB不能构成三线八角,无法判断.
∵∠1=∠2
∴AB∥CD(内错角相等,两直线平行)
所以①正确
∵AB∥CD(已证)
∴∠BAD+∠ADC=180°(两直线平行,同旁内角互补)
又∵∠BAD=∠BCD
∴∠BCD+∠ADC=180°
∴AD∥BC(同旁内角互补,两直线平行)
故②也正确
∵AB∥CD,AD∥BC(已证)
∴∠B+∠BCD=180°
∠D+∠BCD=180°
∴∠B=∠D(同角的补角相等)
所以③也正确.
∠D与∠ACB不能构成三线八角,无法判断,故④错误,
正确的有3个,故选C.
考点:本题考查的是平行线的性质与判定
点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网