题目内容
2.分析 由OC平分∠AOB得∠COD=∠COE,由CD⊥OA、CE⊥OB知∠CDO=∠CEO=90°,从而证△COD≌△COE可得OD=OE,OC=OE,即可说明OC垂直平分DE.
解答 解:OC垂直平分DE,
∵OC平分∠AOB,
∴∠COD=∠COE,
又∵CD⊥OA,CE⊥OB,
∴∠CDO=∠CEO=90°,
在△COD和△COE中,
∵$\left\{\begin{array}{l}{∠COD=∠COE}\\{∠CDO=∠CEO}\\{OC=OC}\end{array}\right.$,
∴△COD≌△COE(AAS),
∴OD=OE,OC=OE,
∴OC垂直平分DE.
点评 本题主要考查角平分线的性质、全等三角形的判定与性质、中垂线的性质,根据全等三角形的判定与性质证得OD=OE,OC=OE是解题的关键.
练习册系列答案
相关题目
10.八(5)班五位同学参加学校举办的“社会主义核心价值观”知识竞赛,试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如表所示
(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;
(2)最后获知A,B,C,D,E五位同学成绩分别是95分,81分,64分,83分,58分.
①求E同学的答对题数和答错题数;
②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).
| 参赛同学 | 答对题数 | 答错题数 | 未答题数 |
| A | 19 | 0 | 1 |
| B | 17 | 2 | 1 |
| C | 15 | 2 | 3 |
| D | 17 | 1 | 2 |
| E | / | / | 7 |
(2)最后获知A,B,C,D,E五位同学成绩分别是95分,81分,64分,83分,58分.
①求E同学的答对题数和答错题数;
②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).