题目内容


1)已知正方形ABCD中,对角线AC与BD相交于点O,如图①,将△BOC绕点O逆时针方向旋转得到△B′OC′,OC′与CD交于点M,OB′与BC交于点N,请猜想线段CM与BN的数量关系,并证明你的猜想.

(2)如图②‚,将(1)中的△BOC绕点B逆时针旋转得到△BO′C′,连接AO′、DC′,请猜想线段AO′与DC′的数量关系,并证明你的猜想.

(3)如图③ƒ,已知矩形ABCD和Rt△AEF有公共点A,且∠AEF=90°,∠EAF=∠DAC=α,连接DE、CF,请求出的值(用α的三角函数表示).


解:(1)CM=BN.理由如下:如图①,

∵四边形ABCD为正方形,

∴OB=OC,∠OBC=∠OCD=45°,∠BOC=90°,

∵△BOC绕点O逆时针方向旋转得到△B′OC′,

∴∠B′OC′=∠BOC=90°,

∴∠B′OC+∠COC′=90°,

而∠BOB′+∠B′OC=90°,

∴∠B′OB′=∠COC′,

在△BON和△COM中

∴△BON≌△COM,

∴CM=BN;

(2)如图②,连接DC′,

∵四边形ABCD为正方形,

∴AB=BC,AC=BD,OB=OC,∠OBC=∠ABO=45°,∠BOC=90°,

∴△ABC和△OBC都是等腰直角三角形,

∴AC=AB,BC=BO,

∴BD=AB,

∵△BOC绕点B逆时针方向旋转得到△B′OC′,

∴∠O′BC′=∠OBC=45°,OB=O′B,BC′=BC,

∴BC′=BO′,

==

∵∠1+∠3=45°,∠2+∠3=45°,

∴∠1=∠2,

∴△BDC′∽△BAO′,

==

∴DC′=AO′;

(3)如图③,在Rt△AEF中,cos∠EAF=

在Rt△DAC中,cos∠DAC=

∵∠EAF=∠DAC=α,

==cosα,∠EAF+∠FAD=∠FAD+∠DAC,即∠EAD=∠FAC,

∴△AED∽△AFC,

==cosα.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网