题目内容
如图,△ABC中,∠ACB=90°,延长AC到D,使得CD=CB,过点D作DE⊥AB于点E,交BC于F.求证:AB=DF.
等边三角形ABC绕着它的中心,至少旋转______度才能与它本身重合.( )
A.60° B.120° C.180° D.360°
如图,点E,F在线段AC上,AB∥CD,AB=CD,AE=CF.求证:BE=DF.
对于平面直角坐标系xOy中的点P和线段AB,给出如下定义:在线段AB外有一点P,如果在线段AB上存在两点C、D,使得∠CPD=90°,那么就把点P叫做线段AB的悬垂点.
(1)已知点A(2,0),O(0,0)
①若,D(1,1),E(1,2),在点C,D,E中,线段AO的悬垂点是______;
②如果点P(m,n)在直线上,且是线段AO的悬垂点,求的取值范围;
(2)如下图是帽形M(半圆与一条直径组成,点M是半圆的圆心),且圆M的半径是1,若帽形内部的所有点是某一条线段的悬垂点,求此线段长的取值范围.
列方程或方程组解应用题:八年级的学生去距学校10千米的科技馆参观,一部分学生骑自行车先走,过了20分钟,其余的学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑自行车学生速度的2倍,求骑车学生每小时走多少千米?
若分式的值为0,则x的值等于_________ .
关于x的方程有两个相等的实数根,那么m的值为( )
A. B. C.1 D.2
计算:.
(12分)已知:抛物线y=+(2m-1)x+-1经过坐标原点,且当x<0时,y随x的增大而减小.
(1)求抛物线的解析式,并写出y<0时,对应x的取值范围;
(2)设点A是该抛物线上位于x轴下方的一个动点,过点A作x轴的平行线交抛物线于另一点D,再作AB⊥x轴于点B, DC⊥x轴于点C.
①当BC=1时,直接写出矩形ABCD的周长;
②设动点A的坐标为 (a,b),将矩形ABCD的周长L表示为a的函数并写出自变量的取值范围,判断周长是否存在最大值,如果存在,求出这个最大值,并求出此时点A的坐标;如果不存在,请说明理由.