题目内容
由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是( )
A. 3 B. 4 C. 5 D. 6
如图,AB是⊙O的直径,⊙O交BC于D,过D作⊙O的切线DE交AC于E,且DE⊥AC,由上述条件,你能推出的正确结论有:_____________.
(要求:不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程,至少写出4个结论,结论不能类同)
如图,正方形ABCD边长为2,E为AB边的中点,点F是BC边上一个动点,把△BEF沿EF向形内部折叠,点B的对应点为B’, 当B’D的长最小时,BF长为( )
A. B. C. D.
已知:已知关于x的一元二次方程x2+ax+a-2=0
(1)若该方程有一个实数根为1,求a的值及方程的另一实根.
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若 ,则 =_____.
如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.
(1)求抛物线的表达式;
(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;
(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由.
如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点,此时;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点,此时;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点,此时;…,按此规律继续旋转,直至得到点为止.则=________.
问题提出:如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP,求AP+BP的最小值.
(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴,∴PD=BP,∴AP+BP=AP+PD.
请你完成余下的思考,并直接写出答案:AP+BP的最小值为 .
(2)自主探索:在“问题提出”的条件不变的情况下, AP+BP的最小值为 .
(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是上一点,求2PA+PB的最小值.
小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.下列事
件是必然事件的是
A. 掷一次骰子,朝上的一面的点数大于0.
B. 掷一次骰子,朝上的一面的点数为7.
C. 掷一次骰子,朝上的一面的点数为4.
D. 掷两次骰子,朝上的一面的点数都是3.