ÌâÄ¿ÄÚÈÝ
8£®£¨1£©ÇóÍõÒ¯Ò¯Æï³µµÄËٶȺ͵ãDµÄ×ø±ê£¿
£¨2£©ÇóСÍõ½Óµ½Íõүүʱ¾àAɽÓжàÔ¶£¿
·ÖÎö £¨1£©¸ù¾ÝËÙ¶È=·³Ì¡Âʱ¼ä£¬¼´¿ÉËã³öÍõÒ¯Ò¯Æï³µµÄËÙ¶È£¬ÔÙ½áºÏµãBµÄ×ø±ê¼´¿ÉµÃ³öµãDµÄ×ø±ê£»
£¨2£©ÉèÖ±ÏßBDµÄ½âÎöʽΪy=kx+b£¬ÓɵãB¡¢DµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³öÖ±ÏßBDµÄ½âÎöʽ£¬ÔÙÁªÁ¢BD¡¢ECµÄ½âÎöʽ³É·½³Ì×飬½â·½³Ì×é¼´¿ÉÇó³öµãCµÄ×ø±ê£¬Óɴ˼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©1Сʱ50·ÖÖÓ=$\frac{11}{6}$Сʱ£¬
ÍõÒ¯Ò¯Æï³µµÄËÙ¶ÈΪ£º22¡Â$\frac{11}{6}$=12£¨Ç§Ã×/ʱ£©£¬
µãDµÄºá×ø±êΪ£º$\frac{11}{6}$+5=$\frac{41}{6}$£¨Ð¡Ê±£©£¬
¡àÍõÒ¯Ò¯Æï³µµÄËÙ¶ÈΪ12ǧÃ×/ʱ£¬µãDµÄ×ø±êΪ£¨$\frac{41}{6}$£¬0£©£®
£¨2£©ÉèÖ±ÏßBDµÄ½âÎöʽΪy=kx+b£¬
½«µãB£¨5£¬22£©¡¢D£¨$\frac{41}{6}$£¬0£©´úÈëy=kx+bÖУ¨k¡Ù0£©£¬
µÃ£º$\left\{\begin{array}{l}{22=5k+b}\\{0=\frac{41}{6}k+b}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{k=-12}\\{b=82}\end{array}\right.$£¬
¡àÖ±ÏßBDµÄ½âÎöʽΪy=-12x+82£®
ÁªÁ¢Ö±ÏßBD¡¢ECµÄ½âÎöʽµÃ£º$\left\{\begin{array}{l}{y=60x-290}\\{y=-12x+82}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{x=\frac{31}{6}}\\{y=20}\end{array}\right.$£¬
22-20=2£¨Ç§Ã×£©£®
´ð£ºÐ¡Íõ½Óµ½Íõүүʱ¾àAɽ2ǧÃ×£®
µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯ÊýµÄÓ¦Óᢴý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽÒÔ¼°½â¶þÔªÒ»´Î·½³Ì×飬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©¸ù¾ÝÊýÁ¿¹ØÏµÁÐʽ¼ÆË㣻£¨2£©Í¨¹ý½â·½³Ì×éÇó³öµãCµÄ×ø±ê£®±¾ÌâÊôÓÚÖеµÌ⣬ÄѶȲ»´ó£¬½â¾ö¸ÃÌâÐÍÌâĿʱ£¬ÕÒ³öµãµÄ×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨Çó³öº¯Êý½âÎöʽÊǹؼü£®
| A£® | -$\frac{3}{2}$ | B£® | $\frac{3}{2}$ | C£® | -$\frac{2}{3}$ | D£® | $\frac{2}{3}$ |
| A£® | ¡Ï1=¡Ï3 | B£® | ¡Ï1=¡Ï2 | C£® | ¡Ï1£¼¡Ï2 | D£® | ¡Ï2=¡Ï3 |