题目内容

在平面直角坐标系中,点 A(﹣2,0),B(2,0),C(0,2),点 D,点E分别是 AC,BC的中点,将△CDE绕点C逆时针旋转得到△CD′E′,及旋转角为α,连接 AD′,BE′.

(1)如图①,若 0°<α<90°,当 AD′∥CE′时,求α的大小;

(2)如图②,若 90°<α<180°,当点 D′落在线段 BE′上时,求 sin∠CBE′的值;

(3)若直线AD′与直线BE′相交于点P,求点P的横坐标m的取值范围(直接写出结果即可).

(1)60°;(2);(3)﹣≤m≤. 【解析】试题分析:(1)如图1中,根据平行线的性质可得∠AD′C=∠E′CD′=90°,再根据AC=2CD′,推出∠CAD′=30°,由此即可解决问题; (2)如图2中,作CK⊥BE′于K.根据勾股定理和等腰直角三角形的性质求出CK的长,再根据sin∠CBE′= ,即可解决问题;(3)根据图3、图4分别求出点P横坐标的最大值以及最小值即可解决问题. ...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网