题目内容
9.问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.
研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是∠1=2∠A
研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是∠1+∠2=2∠A
研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.
问题2
研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是∠1+∠2=2(∠A+∠B)-360°.
分析 (1)根据折叠性质和三角形的外角定理得出结论;
(2)先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,由两个平角∠ADB和∠AEC得:∠1+∠2等于360°与四个折叠角的差,化简得结果;
(3)利用两次外角定理得出结论;
(4)与(2)类似,先由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,再由两平角的和为360°得:∠1+∠2=360°-2∠BMN-2∠ANM,根据四边形的内角和得:∠BMN+∠ANM=360°-∠A-∠B,代入前式可得结论.
解答
解:(1)如图1,∠1=2∠A,理由是:
由折叠得:∠A=∠DA′A,
∵∠1=∠A+∠DA′A,
∴∠1=2∠A;
故答案为:∠1=2∠A;
(2)如图2,猜想:∠1+∠2=2∠A,理由是:
由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,
∵∠ADB+∠AEC=360°,
∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED,
∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A;
故答案为:∠1+∠2=2∠A;
(3)如图3,∠2-∠1=2∠A,理由是:
∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,
∴∠2=∠A′+∠A+∠1,![]()
∵∠A=∠A′,
∴∠2=2∠A+∠1,
∴∠2-∠1=2∠A;
(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,
∵∠DNA+∠BMC=360°,
∴∠1+∠2=360°-2∠BMN-2∠ANM,
∵∠BMN+∠ANM=360°-∠A-∠B,
∴∠1+∠2=360°-2(360°-∠A-∠B)=2(∠A+∠B)-360°,
故答案为:∠1+∠2=2(∠A+∠B)-360°.
点评 本题是折叠变换问题,思路分两类:①一类是利用外角定理得结论;②一类是利用平角定义和多边形内角和相结合得结论;字母书写要细心,角度比较复杂,是易错题.