题目内容
如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是
A. B. C. D.
D
数学活动课上,四位同学围绕作图问题:“如图,已知直线和外一点P,用直尺和圆规作直线PQ,使PQ⊥于点Q。”分别作出了下列四个图形。其中作法错误的是
如图,已知函数(x>0)的图像经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图像经过点A、D,与x轴的负半轴交于点E.
(1)若AC=OD,求a、b的值;
(2)若BC∥AE,求BC的长.
在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90O,得到的点B的坐标为
如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴相交于点C;直线l的解析式为y=x+4,与x轴相交于点D;以C为顶点的抛物线经过点B.
(1)求抛物线的解析式;
(2)判断直线l与⊙E的位置关系,并说明理由;
(3) 动点P在抛物线上,当点P到直线l的距离最小时,求出点P的坐标及最小距离.
已知是二元一次方程组的解,则的算术平方根为
A.4 B.2 C. D. ±2
已知:,,,…,
观察上面的计算过程,寻找规律并计算 .
不等式组 的解集是 .
如题25图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC 完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.
(1) 填空:AD= (cm),DC= (cm);
(2) 点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C →B的方向运动,当N点运动 到B点时,M,N两点同时停止运动,连结MN,求当M,N点 运动了x秒时,点N到AD的距离(用含x的式子表示);
(3) 在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中, △PMN的面积y存在最大值,请求出这个最大值.
(参考数据:sin75°=,sin15°=)