题目内容
20.已知平面向量$\overrightarrow{a}$、$\overrightarrow{b}$不平行,$\overrightarrow{c}=\overrightarrow{a}+2\overrightarrow{b}$,实数x、y满足$2x\overrightarrow{a}+(5-y)\overrightarrow{b}=(3y+2)\overrightarrow{a}+3x\overrightarrow{c}$,求x、y的值.分析 由平面向量$\overrightarrow{a}$、$\overrightarrow{b}$不平行,$\overrightarrow{c}=\overrightarrow{a}+2\overrightarrow{b}$,实数x、y满足$2x\overrightarrow{a}+(5-y)\overrightarrow{b}=(3y+2)\overrightarrow{a}+3x\overrightarrow{c}$,可得2x$\overrightarrow{a}$+(5-y)$\overrightarrow{b}$=(3x+3y+2)$\overrightarrow{a}$+6x$\overrightarrow{b}$,继而可得方程组:$\left\{\begin{array}{l}{2x=3x+3y+2}\\{5-y=6x}\end{array}\right.$,解此方程组即可求得答案.
解答 解:∵平面向量$\overrightarrow{a}$、$\overrightarrow{b}$不平行,$\overrightarrow{c}=\overrightarrow{a}+2\overrightarrow{b}$,$2x\overrightarrow{a}+(5-y)\overrightarrow{b}=(3y+2)\overrightarrow{a}+3x\overrightarrow{c}$,
∴2x$\overrightarrow{a}$+(5-y)$\overrightarrow{b}$=(3y+2)$\overrightarrow{a}$+3x($\overrightarrow{a}$+2$\overrightarrow{b}$),
∴2x$\overrightarrow{a}$+(5-y)$\overrightarrow{b}$=(3x+3y+2)$\overrightarrow{a}$+6x$\overrightarrow{b}$,
∴$\left\{\begin{array}{l}{2x=3x+3y+2}\\{5-y=6x}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$,
∴x=1,y=-1.
点评 此题考查了平面向量的知识.注意根据题意构造方程组$\left\{\begin{array}{l}{2x=3x+3y+2}\\{5-y=6x}\end{array}\right.$是解此题的关键.
| A. | BD=CD | B. | ∠DAB=∠DAC | ||
| C. | 当∠B=60°时,AB=2BD | D. | 高AD是△ABC的对称轴 |
| A. | 大于零 | B. | 小于零 | ||
| C. | 等于零 | D. | 与零的大小没有关系 |
| A. | 3m | B. | 2m | C. | 4m | D. | $\sqrt{3}$m |