题目内容
如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米.求截去正方形的边长.
![]()
截去正方形的边长为10厘米
【解析】
试题分析:可设截去正方形的边长为x厘米,对于该长方形铁皮,四个角各截去一个边长为x厘米的小正方形,长方体底面的长和宽分别是:(60﹣2x)厘米和(40﹣2x)厘米,底面积为:(60﹣2x)(40﹣2x),现在要求长方体的底面积为:800平方厘米,令二者相等求出x的值即可.
试题解析:设截去正方形的边长为x厘米,由题意得,长方体底面的长和宽分别是:(60﹣2x)厘米和(40﹣2x)厘米,
所以长方体的底面积为:(60﹣2x)(40﹣2x)=800,
即:x2﹣50x+400=0,
解得x1=10,x2=40(不合题意舍去).
答:截去正方形的边长为10厘米.
考点:一元二次方程的应用
练习册系列答案
相关题目
某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)
| 裁法一 | 裁法二 | 裁法三 |
A型板材块数 | 1 | 2 | 0 |
B型板材块数 | 2 | M | N |
设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.
(1)上表中,m= ,n= ;
(2)分别求出y与x和z与x的函数关系式;
(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?
![]()