题目内容
已知扇形的半径为6,圆心角为60°,则这个扇形的面积为( )
A. 9π B. 6π C. 3π D. π
某车间22名工人生产螺钉和螺母,每人每天可生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母.为使每天生产的螺钉和螺母刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?
点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为( )
A. 40° B. 100° C. 40°或140° D. 40°或100°
如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于__________.
请写出一个开口向上且经过(﹣2,1)的抛物线的解析式________________.
【问题探究】
(1)如图1,锐角△ABC中,分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.
【深入探究】
(2)如图2,四边形ABCD中,AB=5cm,BC=3cm,∠ABC=∠ACD=∠ADC=45º,求BD的长.
(3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.
(1)计算: ++2017°.
(2)已知:(x+1)2﹣9=0,求x的值;
如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.
⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;
⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;
⑶当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.
[2017·陕西省]计算: -1= ( )
A. - B. - C. - D. 0