题目内容
(本题6分)解不等式组
如图,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.
(1)请写出图中两对全等的三角形;
(2)求证:四边形BCEF是平行四边形.
(本题满分8分)如图,在△ABC中,CA=CB,以BC为直径的圆⊙O交AC于点G,交AB于点D,过点D作⊙O的切线,交CB的延长线于点E,交AC于点F.
(1)求证:DF⊥AC;
(2)如果⊙O的半径为5,AB=12,求cosE.
正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是( )
A. k>- B. k<- C. k= D. k=0
(本题10分)在东西方向的地面有一长为1km的飞机跑道MN(如图),在跑道西端M 的正西19.5km 处有一观察站A.某时刻测得一架匀速直线降落的飞机位于A 的北偏西30°,且与A相距10km的B处;经过1分钟,又测得该飞机位于A的北偏东60°,且与A相距5 km的C处.
(1)求该飞机航行的速度(保留精确结果);
(2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN之间?请说明理由.
如图, 是⊙O的直径,点, 在⊙O上,且在的同侧,若,则的度数为_________°.
时钟分针的长为10㎝,经过45分钟后,它的分针针尖转过的弧长是
A. B. C. D.
如图,Rt△ABC中,∠ABC=90°,AB=BC,直线l1、l2、l3分别通过A、B、C三点,且l1∥l2∥l3.若l1与l2的距离为4,l2与l3的距离为6,则Rt△ABC的面积为___________.
一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象相交于A、B两点,与y轴交于点C,与x轴交于点D,点D的坐标为(-1,0),点A的横坐标是1,tan∠CDO=2,过点B作BH⊥y轴于点H,连接 AH.
(1)求一次函数和反比例函数的解析式;(2)求△ABH的面积.