ÌâÄ¿ÄÚÈÝ
10£®ÒÑÖªËıßÐÎABCD£¬¶¥µãA£¬BµÄ×ø±ê·Ö±ðΪ£¨m£¬0£©£¬£¨n£¬0£©£¬µ±¶¥µãCÂäÔÚ·´±ÈÀýº¯ÊýµÄͼÏóÉÏ£¬ÎÒÃdzÆÕâÑùµÄËıßÐÎΪ¡°ÖáÇúËıßÐÎABCD¡±£¬¶¥µãC³ÆÎª¡°ÖáÇú¶¥µã¡±£®Ð¡Ã÷¶Ô´ËÎÊÌâ·Ç³£¸ÐÐËȤ£¬¶Ô·´±ÈÀýº¯ÊýΪy=$\frac{2}{x}$ʱ½øÐÐÁËÏà¹ØÌ½¾¿£®£¨1£©ÈôÖáÇúËıßÐÎABCDΪÕý·½ÐÎʱ£¬Ð¡Ã÷·¢ÏÖ²»ÂÛmÈ¡ºÎÖµ£¬·ûºÏÉÏÊöÌõ¼þµÄÖáÇúÕý·½ÐÎÖ»ÓÐÁ½¸ö£¬ÇÒÒ»¸öÕý·½ÐεĶ¥µãCÔÚµÚÒ»ÏóÏÞ£¬ÁíÒ»¸öÕý·½ÐεĶ¥µãC1ÔÚµÚÈýÏóÏÞ£®
¢ÙÈçͼ1Ëùʾ£¬µãAµÄ×ø±êΪ£¨1£¬0£©£¬Í¼ÖÐÒÑ»³ö·ûºÏÌõ¼þµÄÒ»¸öÖáÇúÕý·½ÐÎABCD£¬Ò×ÖªÖáÇú¶¥µãCµÄ×ø±êΪ£¨2£¬1£©£¬ÇëÄ㻳öÁíÒ»¸öÖáÇúÕý·½ÐÎAB1C1D1£¬²¢Ð´³öÖáÇú¶¥µãC1µÄ×ø±êΪ£¨-1£¬-2£©£»
¢ÚСÃ÷ͨ¹ý¸Ä±äµãAµÄ×ø±ê£¬¶ÔÖ±ÏßCC1µÄ½âÎöʽy©„kx+b½øÐÐÁË̽¾¿£¬¿ÉµÃk©„1£¬b£¨Óú¬mµÄʽ×Ó±íʾ£©©„-m£»
£¨2£©ÈôÖáÇúËıßÐÎABCDΪ¾ØÐΣ¬ÇÒÁ½ÁڱߵıÈΪ1£º2£¬µãAµÄ×ø±êΪ£¨2£¬0£©£¬Çó³öÖáÇú¶¥µãCµÄ×ø±ê£®
·ÖÎö £¨1£©¢ÙÓÉÕý·½ÐεÄÐÔÖʺ͡°ÖáÇúËıßÐÎABCD¡±µÄ¶¨ÒåÈÝÒ×»³öͼÐΣ¬µÃ³ö¶¥µãC1µÄ×ø±ê£»
¢ÚÓÉÌâÒâµÃ³öµãCºÍC1µÄ×ø±ê£¬´úÈëy©„kx+b£¬µÃ³ö·½³Ì×飬½â·½³Ì×é¼´¿É£»
£¨2£©·ÖÁ½ÖÖÇé¿ö£º¢Ùµ±AB=2BCʱ£¬ÓɵãAµÄ×ø±êµÃ³öµãCµÄ×ø±êΪ$£¨n\;£¬\;\frac{n-2}{2}£©$»ò$£¨{n\;£¬\;\frac{2-n}{2}}£©$£¬¸ù¾ÝÌâÒâµÃ³ö·½³Ì£¬½â·½³Ì¼´¿É£»
¢Úµ±BC=2ABʱ£¬ÓÉÌâÒâµÃ³öµãCµÄ×ø±êΪ£¨n£¬2n-4£©»ò£¨n£¬4-2n£©£¬¸ù¾ÝÌâÒâµÃ³ö·½³Ì£¬½â·½³Ì¼´¿É£®
½â´ð ½â£º£¨1£©¢ÙÈçͼ1Ëùʾ£ºµã
C1µÄ×ø±êΪ£¨-1£¬-2£©£»
¹Ê´ð°¸Îª£º£¨-1£¬-2£©£»
¢ÚÓÉÌâÒâµÃ£ºCµÄ×ø±êΪ£¨n£¬n-m£©£¬C1µÄ×ø±êΪ£¨m-n£¬-n£©£¬
´úÈëy©„kx+bµÃ£º$\left\{\begin{array}{l}{nk+b=n-m}\\{£¨m-n£©k+b=-n}\end{array}\right.$£¬
½âµÃ£ºk=1£¬b=-m£®
¹Ê´ð°¸Îª£º1£¬-m£»
£¨2£©·ÖÁ½ÖÖÇé¿ö£º¢Ùµ±AB=2BCʱ£¬
¡ßµãAµÄ×ø±êΪ£¨2£¬0£©£¬
¡àµãCµÄ×ø±êΪ$£¨n\;£¬\;\frac{n-2}{2}£©$»ò$£¨{n\;£¬\;\frac{2-n}{2}}£©$£®
¡à$n¡Á\frac{n-2}{2}=2$»ò$n¡Á\frac{2-n}{2}=2$£®
½âµÃ£º$n=1¡À\sqrt{5}$»òÎÞʵ¸ù£®
¡àµãCµÄ×ø±êΪ$£¨{1+\sqrt{5}\;£¬\frac{{\sqrt{5}-1}}{2}}£©$»ò$£¨{1-\sqrt{5}\;£¬\;\frac{{-\sqrt{5}-1}}{2}}£©$£®
¢Úµ±BC=2ABʱ£¬
µãCµÄ×ø±êΪ£¨n£¬2n-4£©»ò£¨n£¬4-2n£©£®
¡àn£¨2n-4£©=2»òn£¨4-2n£©=2£®
½âµÃ£º$n=1¡À\sqrt{2}$»òn=1£®
¡àµãCµÄ×ø±êΪ$£¨{1+\sqrt{2}\;£¬\;2\sqrt{2}-2}£©$»ò$£¨{1-\sqrt{2}\;£¬\;-2-2\sqrt{2}}£©$»ò£¨1£¬2£©£»
×ÛÉÏËùÊö£ºµãCµÄ×ø±êΪ$£¨{1+\sqrt{5}\;£¬\frac{{\sqrt{5}-1}}{2}}£©$»ò$£¨{1-\sqrt{5}\;£¬\;\frac{{-\sqrt{5}-1}}{2}}£©$»ò$£¨{1+\sqrt{2}\;£¬\;2\sqrt{2}-2}£©$»ò$£¨{1-\sqrt{2}\;£¬\;-2-2\sqrt{2}}£©$»ò£¨1£¬2£©£®
µãÆÀ ±¾ÌâÊÇ·´±ÈÀýº¯Êý×ÛºÏÌâÄ¿£¬¿¼²éÁË¡°ÖáÇúËıßÐÎABCD¡±µÄÐÔÖÊ¡¢·´±ÈÀýº¯Êý½âÎöʽµÄÔËÓá¢Ò»´Îº¯Êý½âÎöʽµÄÇ󷨡¢Õý·½ÐεÄÐÔÖÊ£¬¾ØÐεÄÐÔÖÊ¡¢·½³ÌµÄ½â·¨µÈ֪ʶ£»±¾Ìâ×ÛºÏÐÔÇ¿£¬ÓÐÒ»¶¨ÄѶȣ¬Àí½â¡°ÖáÇúËıßÐÎABCD¡±Êǽâ¾öÎÊÌâµÄ¹Ø¼ü£®
| A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
| A£® | $\frac{2+a}{{-4-4a-{a^2}}}$ | B£® | $\frac{a-b}{b-a}$ | C£® | $\frac{{{x^2}-4}}{x-2}$ | D£® | $\frac{{{x^2}+{y^2}}}{x+y}$ |