题目内容
一个n边形内角和比n+1边形的内角和少三分之一,则n=
- A.4
- B.5
- C.6
- D.7
A
分析:n边形内角和是(n-2)180度,n+l边形的内角和是(n-1)180度,根据n边形内角和比n+l边形的内角和少三分之一就得到一个相等关系:n边形内角和=(n+l)边形的内角和×(1-
),这样就可以列出方程,从而求出n的值.
解答:根据题意得:(n-2)180=(n-1)180•(1-
),解得:n=4.
故选A.
点评:本题主要考查了多边形的内角和定理,是需要熟记的内容.
分析:n边形内角和是(n-2)180度,n+l边形的内角和是(n-1)180度,根据n边形内角和比n+l边形的内角和少三分之一就得到一个相等关系:n边形内角和=(n+l)边形的内角和×(1-
解答:根据题意得:(n-2)180=(n-1)180•(1-
故选A.
点评:本题主要考查了多边形的内角和定理,是需要熟记的内容.
练习册系列答案
相关题目
一个n边形内角和比n+1边形的内角和少三分之一,则n=( )
| A、4 | B、5 | C、6 | D、7 |