题目内容
如图,正方形ABCD的边长为4,点M在边DC上,M、N 两点关于对角线AC对称,若DM=1,则tan∠ADN= .
如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(0,y2)是抛物线上两点,则y1<y2,其中说法正确的是( )
A.①② B.②③ C.①②④ D.②③④
如图,在平面直角坐标系中,x轴上一点A从点(-3,0)出发沿x轴向右平移,当以A为圆心,半径为1的圆与函数y=x的图像相切时,点A的坐标变为 .
已知x=1是一元二次方程x2-2mx+1=0的一个解,则m的值是( )
A.1 B.0 C.0或1 D.0或-1
(本题满分8分)如图,某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角且CB=5米.
(1)求钢缆CD的长度;(精确到0.1米)
(2)若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E距离地面多少米? (参考数据:tan400=0.84, sin400=0.64, cos400=)
如图,在△ABC中,DE∥BC,若,DE=4,则BC= .
如图,DE是ΔABC的中位线,则ΔADE与ΔABC的面积之比是( )
A.1:1 B.1:2 C.1:3 D.1:4
已知扇形的面积为2π,半径为3,则该扇形的弧长为________(结果保留π).
用配方法解方程时,原方程应变形为( )
A. B.
C. D.