题目内容

已知代数式-5x2+ax+bx2+2x-5的取值与x无关,求a、b的值.
考点:多项式
专题:
分析:原式合并同类项后,根据多项式的值与x无关,得出关于a与b的方程,求出a与b的值.
解答:解:-5x2+ax+bx2+2x-5=(-5+b)x2+(a+2)x-5,
∵代数式-5x2+ax+bx2+2x-5的取值与x无关,
∴-5+b=0,解得b=5
a+2=0,解得a=-2.
故a的值是-2、b的值是5.
点评:此题考查了整式的加减,涉及的知识有:合并同类项法则,熟练掌握法则是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网